Defective C and Finiteness
Neven Wenger (neven.wenger@gmx.net)
Graduiertenkolleg “Satzarten” • University of Frankfurt a. M.

1. DEFECTIVENESS The notion of defectiveness (i) has gained central importance in phase-based minimalist syntax (Chomsky 2000 et seq.). A Core Functional Category (C, T, v – the tripartite backbone of the clause) is defective if it contains only a partial set of uninterpretable φ-features (ϕ_{def} = [UNUMBER]); otherwise, ϕ is complete (ϕ_{comp} = [UPERSON, UNUMBER]), enabling overt reflexes of agreement and Case. Alas, the inventory of defective categories (T_{def}, v_{def}) doesn’t mirror that of phase heads (C, v). This asymmetry is resolved by the operation of feature inheritance (Chomsky 2007, Chomsky 2008, Richards 2007), capturing the derivational dependence of T_{comp} on C (the C–T link; cf. Fortuny 2007): φ- and tns-features are contained in C, from where they are handed down to T, rendering it a ‘Probe by inheritance.’ Accordingly, whereas C and T_{comp} always co-occur (basically yielding finite structures), T cannot inherit any features if it remains unselected by C (i.e. if there’s no C), yielding a defective domain (T_{def}) with the common properties (e.g. ECM/raising structures: domain transparency, nonfinit morphology, non-[NOM] Subjects, etc.).

II. DEFECTIVE C Another way of approaching the C–T dependency is taken by Gallego (2007) (similarly, Fortuny 2007, Sabel 2006): defective C (C_{def}). By introducing C_{def}, Gallego (2007: 175) harmonises the phase head system so as to yield a uniform distribution of C–T dependencies (2). Somewhat redundantly, then, Gallego adds a ‘defectiveness by inheritance’ to feature inheritance proper (‘Probe by inheritance’). In other words, C is always present, either as C_{comp} (finite, Control, infinitival COMPs), or as C_{def} (raising, ECM, other ‘reduced’ nonfinit structures). In favour of C_{def}–T_{def}, Gallego cites e.g. Subjunctive dependents (in Catalan), which do show overt C^{0} que ‘that’, but behave as if they were defective domains (e.g. obviation) (3). Thus, Gallego (2007: 212) groups (Catalan) Subjunctives with other defective structures (in English: ECM, raising), contrasting them with Indicatives (4).

III. FINITENESS Clearly, on minimalist grounds, it is desirable to reduce the redundancy inherent to (2). Since the dividing line between ‘defective’ and ‘complete’ domains runs along the dimension of finiteness, I propose to put closer scrutiny the syntax of finiteness (morphological Tense in European languages). Adopting a Neo-Reichenbachian view of tenses (cf. Roberts & Roussou 2002 for a recent implementation; also Pesetsky & Torrego 2001 et seq.), tenses can be conceived of as a three-membered Chain C–T–v, encoding different relations of Speech Time (ST)–Reference Time (RT)– Event Time (ET) (5) qua [±COINCIDENCE]. In this sense, the distinction T_{comp}/T_{def} is meaningless, T always being a relator of the v_{ET} in its scope and a higher C_{[ST]} (cf. Boeckx 2008 for a similar generalised view). Ideally (and most radically), the most economic derivation of nonfinit structures would then be phrase-structural defectiveness (in the sense of scalar truncation): the lack of C^{0}. In this sense, nonfiniteness would simply be the reflex of the absence of a referential anchor C^{0}, needed to fix deictic tense (= finiteness; cf. Bianchi 2003) (6). The prediction would be that ‘nonfiniteness ≤ TP’.

Naturally, however, this reconception of the C–T link demands a critical re-examination of both (i) feature inheritance and (ii) C_{def}: (i) Must Subjecthood ([NOM], φ-agreement) be tied to T^{0}, or can it be exclusively associated with the (lower) C-domain (cf. the centrality of SpecFin in Germanic languages; also cf. Rizzi & Shlonsky 2007)?; (ii) Given that counterevidence to this minimal assumption in favour of C_{def} exists (7), the fine structure of defectiveness needs much closer examination than the macro-heads C^{0} and T^{0} allow for (either in terms of phrase-structural cartographies (8), or head-internal feature hierarchies/geometries (9)) if something like C_{def} is to be integrated into a minimalist theory of syntax.
(1) defectiveness: An LI is defective if it lacks some feature(s) of a given class.
(Gallego 2007: 82)

(2) a. C_{comp} > T_{comp}
b. C_{def} > T_{def}
(Gallego 2007: 175)

(3) obviation (Catalan)
a. *La Maria, lamenta [CP_{def} que pro, tingui tants problems].
the Maria regret-3sg that pro have-SUBJ-3sg so-many problems
'Maria regrets that she have so many problems.'
b. La Maria, diu [CP_{def} que pro, té molts problems]
the Maria say-3sg that pro have-(IND)-3sg many problems
'Maria says that she has many problems.'
(Gallego 2007: 212)

(4) a. C_{comp} > T_{Ind}
b. C_{def} > T_{Subj}
(Gallego 2007: 212)

(5) [CP C_{[ST]} [IP I_{[RT]} [v_{[ET]}]]]

(6) a. I want [TP Fritz to cry like a baby].
b. I saw [AspP Fritz cry like a baby]
c. I had [IP Fritz cry like a baby].
ECM
PVC
causative

(7) a. Fritz promised [C_{def} PRO to feed the fish].
b. Fritz forgot [what C_{def} to do].
c. I intend [for C_{def} Fritz to leave].
Control
wh-infinitives
nonfinite COMP

(8) C_{def} = Force\rightarrow Fin[-FIN] > IP
cartography

(9) C in wh-infinitivals (adapted from Sabel 2006: 243, 251f.)
a. Lena has decided [what PRO to say].
Lena has decided [what to say]
\rightarrow C[+\phi/TNS, +FOC/WH]
English
German
b. *Lena hat entschieden, [was PRO zu sagen].
\rightarrow C_{def}[+\phi/TNS, -FOC/WH]

References

Fortuny, Jordi. 2007. The Emergence of Order in Syntax. Amsterdam: John Benjamins.

Pesetsky, David & Esther Torrego. 2001. T-to-C move-
ment: Causes and consequences. In Michael Ken-

